Acta Cryst. (1963). 16, 640

Die Struktur des Kurrol'schen Na-Salzes $(NaPO_3)_x$, Typ B

VON K. H. JOST

Institut für anorganische Chemie der Deutschen Akademie der Wissenschaften, Berlin-Adlershof

(Eingegangen am 28 Juni 1962)

The structure was solved by the aid of direct methods. The anion forms a screw with 4 tetrahedra per period, but of a different type from that in the Kurrol A salt. The Na⁺ ions are coordinated by 6 oxygen atoms.

Allgemeines

Vor kurzem wurde die Struktur des Typs A des Kurrolschen Na-Salzes bestimmt (Jost, 1961). Das Anion dieser Substanz besteht aus schraubenförmig gewundenen (PO₄)-Tetraederketten mit 4 Tetraedern pro Windung. Es existiert noch eine in Habitus und Gitterkonstanten ähnliche Modifikation des Kurrolschen Na-Salzes, der Typ B, der zuerst von Plieth & Wurster (1951) beobachtet wurde. Sie entsteht aus Schmelzen des Graham'schen Salzes NaPO₃ unter so ähnlichen Bedingungen wie der Typ A (Thilo, Schulz & Wichmann, 1953), dass es bis jetzt noch vom Zufall abhängig ist, ob Typ A oder Typ B entsteht. Kurrol B ist die stabilere Form — sie soll auch beim feinen Zerspalten von Kristallen des Typs A entstehen (Plieth & Wurster, 1951).

Gitterkonstanten und Raumgruppe wurden in Übereinstimmung mit den Angaben von Corbridge (1955) gefunden:

a	==	11,37 A		
b	==	6,01 Å	(Nadelachse)	Raumgruppe $P2_1/n$
с	==	7,63 Å		8 NaPO ₃ pro Zelle
β	=	85,7°		_

Bei Kristallen des Typs A, mit denen kleinste

Kristalle des Typs *B* mit genau parallelen *y*-Achsen und nur wenig um eine mittlere Lage schwankenden *x*- und *z*-Achsen verwachsen waren, bildeten die positiven Richtungen der *x*- und *z*-Achsen von *A* mit den für $\beta < 90^{\circ}$ positiven Richtungen der *x*- und *z*-Achsen von *B* nur Winkel von wenigen Grad. Deshalb wurde β kleiner als 90° gewählt.

Mit Cu K-Strahlung wurden Weissenberg-Aufnahmen der (h0l), (h1l), (h2l), (h3l) und (h4l) Reflexe gemacht und auf Absorption korrigiert. Die (hk0)Reflexe wurden mit Mo K-Strahlung unter schräger Einstrahlung aufgenommen, da sich die Kristalle nicht quer zur Nadelrichtung spalten lassen. Wegen der schlechten Qualität der Kristalle konnten die

Tabelle 1. Atomkoordinaten

Atom	x/a	y/b	z/c
Na(1)	0,194	0,926	0,615
Na(2)	0,000	0,669	0,808
$\mathbf{P}(1)$	0,191	0,421	0,464
$\mathbf{P}(2)$	0,098	0,156	0,183
O(11)	0,190	0,339	0,646
O(12)	0,154	0,213	0,359
O(13)	0,123	0,619	0,418
O(21)	0,179	0,949	0,109
O(22)	0,117	0,340	0,062
O(23)	0,024	0,936	0,783

Tabelle 2. Beobachtete Strukturfaktoren $|F_0|$ und berechnete Strukturfaktoren F_c

hl Po F	hl Po Pc	hl Fo Fc	hl Po Pc	hk Fo Fc	hk Fo Fc	hk Fo Fo	EX Po Po
h 1 Polo	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $
5 1	$\frac{4}{2}$ $\frac{-13}{26}$ $\frac{4}{25}$	5 56 61 7 28 30	5 24 37 4 61 61	2 25 24 35	54	2 17 19	18 C 17 -S

Fig. 1. Endgültige Elektronendichte-Projektionen mit eingezeichneten PO_4 -Tetraedern. Äquidistante Linien, Null-Linie gestrichelt: (a) $\varrho(x, y)$, (b) $\varrho(x, z)$.

Intensitäten der (hk0) Reflexe nur sehr ungenau bestimmt werden.

Strukturbestimmung

Die Vorzeichen der (h0l) Reflexe wurden mit Tripelprodukt-Methoden (Cochran, 1952; Zachariasen, 1952; Kitaigorodskij, 1954) bestimmt, die Vorzeichen der (hk0) Reflexe mit allen Intensitäten nach statistischen Methoden (Bertaut, 1958). Für letztere ergaben sich 2 mögliche Vorzeichensätze. Mit beiden wurden Elektronendichteverteilungen berechnet und die mit der chemischen Zusammensetzung verträgliche ausgewählt. Die Koordinaten wurden über ($F_o - F_c$)-Synthesen verfeinert (Tabelle 1).

Mit allen Reflexen, einschliesslich der nicht beobachteten, ergeben sich folgende R-Faktoren (Tabelle 2):

$$R(h0l) = 0.12$$
 (aus 97 Reflexen)
 $R(hk0) = 0.17$ (aus 122 Reflexen)

Die mittleren Temperaturfaktoren sind B(h0l) = B(hk0) = 1,33 Å². Die f_j wurden so gewählt wie beim Kurrol A (Jost, 1961).

Eine Abschätzung der Fehler der Atomlagen hat bei den ungenauen (*hk*0)-Intensitäten wenig Sinn.

Ergebnisse

Das Anion des Kurrol B bildet ebenso wie das des Kurrol A eine schraubenförmig gewundene PO₄- Tetraederkette mit 4 Tetraedern pro Windung (Fig. 1). Vor allem in der (x, z)-Projektion macht die Kette jedoch einen wesentlich anderen Eindruck als die des Kurrol A (Fig. 2), was hauptsächlich durch die andere

Fig. 2. Schematische Projektionen der Tetraederketten in Kettenrichtung in den Kurrolschen Na-Salzen: (a) Kurrol B, (b) Kurrol A.

Lage zweier Brücken-Sauerstoffatome (O(12), O(12'))verursacht wird. Man erhält die Lage von O(12) in

Tabelle 3. Kantenlängen der PO₄-Tetraeder

(Vgl. Fig. 2)							
Tetraeder	um P(1)	Tetraeder um $P(2)$					
O(12)O(21)	2,40 Å	O(12)O(21)	2,48 Å				
O(11)O(21)	2,45	O(21)O(22)	2,49				
O(13)O(21)	2,47	O(21)O(23)	2,49				
O(11)O(12)	2,38	O(12)O(22)	2,46				
O(12)O(13)	2,50	O(12)O(23)	2,53				
O(11)O(13)	2,57	O(22)O(23)	2,54				

Fig. 3. Bindungslängen und Valenzwinkel in der PO_4 -Kette. Die Darstellung entspricht der (x, z)-Projektion.

Kurrol *B* aus der Lage von O(12) in Kurrol *A* durch Drehen um die Verbindungslinie P(1)-P(2). Atomabstände und Valenzwinkel (Fig. 3, Tabelle 3) sind unzuverlässig, da die Fehler nicht bekannt sind.

Die Na⁺, die in Kurrol A von 5 Sauerstoffatomen umgeben sind, sind im Kurrol B durch das Heranrücken an die Brücken-Sauerstoffatome von 6 Sauerstoffatomen umgeben (Fig. 4). Je 5 Sauerstoffatome bilden eine 3-zählige Doppelpyramide, in deren Zentrum das Na⁺ liegt. In Fig. 4 sind die Mittelebenen dieser Doppelpyramiden gestrichelt eingetragen, die Verbindungslinien der Spitzen, die ungefähr senkrecht zur Mittelebene stehen, fett ausgezogen. Die Brücken-Sauerstoffatome liegen unregelmässig zu den Polyedern (Fig. 4, punktiert). Stichhaltige Gründe, warum Kurrol A stabiler ist als Kurrol B, haben auch die Strukturbestimmungen nicht erbracht. Hierzu sind noch Untersuchungen über die Modifikationsumwandlungen im System NaPO₃ erforderlich.

Herrn Prof. E. Thilo danke ich für sein Interesse an dieser Arbeit. Für die sorgfältige Auswertung der

Fig. 4. Umgebung der Na⁺-Ionen, dargestellt in der (x, y)-Projektion mit Atomabständen.

C	estricheltes Dreieck:	Mittelebene	des	Koord	inatic	onspoly-
		eders.				
F	'ett ausgezogen:	Ungefähre	Senk	rechte	zur	Mittel-
		ebene.				
E	unktiert:	Verbindung	slinie	Na+-E	Brück	en-
		Sauerstoff.				

Aufnahmen und die Durchführung der Rechenarbeiten danke ich Frl. R. Köhler und Frau I. Rau,

Literatur

- BERTAUT, E. F. (1958). Fortschr. Min. 36, 119.
- COCHRAN, W. (1952). Acta Cryst. 5, 65.
- CORBRIDGE, D. E. C. (1955). Acta Cryst. 8, 520.
- JOST, K. H. (1961). Acta Cryst. 14, 844.
- KITAIGORODSKIJ, A. J. (1954). Trudij Inst. Krist. Akad. Nauk (USSR), 10, 10.
- PLIETH, K. & WURSTER, CHR. (1951). Z. anorg. allg. Chem. 267, 49.
- THILO, E., SCHULZ, G. & WICHMANN, E. M. (1953). Z. anorg. allg. Chem. 272, 182.
- ZACHARIASEN, W. H. (1952). Acta Cryst. 5, 68.

